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75015 Paris, France
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Abstract. Macroscopic Wigner islands present an interesting complementary approach to explore the prop-
erties of two-dimensional confined particles systems. In this work, we characterize theoretically and exper-
imentally the interaction between their basic components, viz., conducting spheres lying on the bottom
electrode of a plane condenser. We show that the interaction energy can be approximately described by a
decaying exponential as well as by a modified Bessel function of the second kind. In particular, this implies
that the interactions in this system, whose characteristics are easily controllable, are the same as those
between vortices in type-II superconductors.

PACS. 41.20.Cv Electrostatics; Poisson and Laplace equations, boundary-value problems – 68.65.-k
Low-dimensional, mesoscopic, and nanoscale systems: structure and nonelectronic properties

1 Introduction

The recent development of in-situ imaging techniques
has allowed new experimental investigations of two-
dimensional mesoscopic devices consisting in small num-
bers of interacting confined particles. For instance, in
type-II superconductors, SQUID microscopy [1] or the
multiple-small-tunnel junction method [2] have made
possible the tracking of the vortices. Even more recently,
stable and metastable vortex configurations in supercon-
ducting disks were observed using a Bitter decoration
technique [3]. Many other systems are governed by the
same physics: an interparticle interaction, a confining po-
tential, and possibly a thermal activation [4].

In parallel with the experiments, the simplicity of the
input ingredients has allowed the development of numeri-
cal simulations to determine both the equilibrium configu-
rations and the dynamics of these systems. However, when
the energy levels are very close, the uncertainties inherent
in the numerical simulations make the confrontation with
the experiments necessary.

The difficulties in controlling exhaustive sets of exper-
imental parameters in real mesoscopic systems, such as
the pinning or the interaction strengths, have led us to
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devise an analogue macroscopic experimental set-up, con-
sisting in macroscopic Wigner islands, whose character-
istics are easily tunable. As illustrated in Figure 1, our
macroscopic Wigner islands are constituted by millimet-
ric stainless steel spheres (of radius R = 0.4 mm and
mass m = 2.15 mg), sitting inside a horizontal plane con-
denser of height h = 1.5 mm. The bottom electrode of
the condenser is a doped silicon wafer, whereas the top
one is a transparent conducting glass, thus allowing a di-
rect capture of the position of the spheres by means of a
camera placed above the experimental device. A metal-
lic frame of height hc = 1.5 mm, intercalated between the
two electrodes and in electric contact with the bottom
one, confines the spheres. Note that the confining frame
could be set to a different potential than the bottom elec-
trode, but, for simplicity, in the following we will focus
on the equality case. When a potential difference V0 is
applied to the condenser, the spheres become charged, re-
pel each other and spread throughout the whole available
space, electrostatically confined by the outside frame. The
voltage V0 goes typically from a few hundred Volts to a
thousand, above which the condenser breaks down. By
mechanically shaking the whole system, we can thermal-
ize it: the spheres acquire a Brownian motion [5] and obey
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V0

Fig. 1. Section of the experimental device. Here the frame is
circular, as it will be used in Section 4.

Boltzmann statistics, in which the shaking amplitude
plays the role of an effective temperature [6].

We then have a system in which the interaction be-
tween the spheres, as well as the confining potential, can
be easily adjusted. This device has been previously used to
study small confined systems [7,8]; in such systems, as it
has been shown in numerous numerical studies [9–11], the
equilibrium positions and the dynamics are highly depen-
dent upon the interaction between the particles. The same
experimental set-up can be used to study pinning prob-
lems in two-dimensional elastic lattices. Indeed, defect-free
lattices of a few thousand spheres can be obtained [12].
Again, the behavior of the system, in particular far from
the equilibrium, highly depends on the interaction poten-
tial.

The comparison of our experimental equilibrium po-
sitions with the calculated ones, for up to thirty parti-
cles confined by a potential with axial symmetry, had
led us to think that our interparticle interaction poten-
tial was logarithmic, at least within the experimental dis-
tance range [7]. The equilibrium configurations were also
determined with an elliptic confinement [8]: the ground
state configuration for 17 particles has been compared
with the one for 17 vortices resulting from the minimiza-
tion of the Ginzburg-Landau free energy in a mesoscopic
type-II superconductor of the same geometry [13]. It has
been suggested to the authors of the numerical study that
the configuration that they presented was not the fun-
damental state but the first excited level, as they finally
confirmed [14]. Let us remind that the intervortices inter-
action is described by the modified Bessel function of the
second kind K0 [15], which has the following asymptotic
behaviors:

K0(r/λ) ∼
r→0 − ln(r/λ) (1)

∼
r→∞

√
πλ

2r
e−r/λ. (2)

All these indications on the nature of the interparticle
interaction are indirect evidences and depend on already
existing and studied interactions. Thus, they need to be
confirmed and quantified.

In this paper, we calculate numerically this interaction
by considering the electrostatic problem of two spheres in
electric contact with one of the electrode of an infinite
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Fig. 2. Geometry for the electrostatic interaction of two
spheres inside a parallel plates condenser.

plane condenser. Section 2 is dedicated to the numerical
resolution of the problem. First, the Laplace equation is
formally solved by means of a multipolar expansion. The
numerically obtained electrostatic potential allows to cal-
culate the electrostatic energy of the system, from which
the interaction energy between two spheres is derived. In
the range of distances in which the numerical calculations
can be made with sufficient accuracy, the interaction en-
ergy is well fitted by a decaying exponential as well as by
a modified Bessel function K0, both being controlled only
by two parameters: their amplitude and their screening
length. In Section 3, we determine a simple approximation
of the confining potential in the case of a circular frame, by
considering the frame as a hedge of spheres over which the
intersphere interaction energy can be integrated. A correc-
tion of the amplitude of the confining potential must be
introduced to take into account the height difference be-
tween the interacting spheres and the frame. This is done
in Section 4, where the equilibrium configurations for up
to 30 spheres and a circular frame are calculated. Com-
parisons with the experimental data allow to adjust the
amplitude of the confinement and to validate the model.

2 Interaction between two spheres

2.1 Determination of the electrostatic potential

We consider an infinite planar parallel plates condenser
of thickness h; its lower plate is kept at zero potential
and its upper plate is kept at the fixed potential V0. On
the lower plate, in electric contact with it, sit two con-
ducting spheres of radius R < h/2; the centers of the
two spheres are separated by the distance d ≥ 2R. We
introduce a Cartesian coordinate system r = (x, y, z) hav-
ing the z-axis orthogonal to the plates of the condenser,
with z = 0 (resp. z = h) on the lower (resp. upper)
plate; we choose the x and y-axis such that the centers
of the two spheres are situated at x = ±d/2 and y = 0.
Furthermore, we introduce two local Cartesian coordinate
systems r− = (x−, y−, z−) and r+ = (x+, y+, z+), cen-
tered, respectively, on the left and right sphere (see Fig. 2),
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and their corresponding spherical systems of coordinates
(r−, θ−, φ−) and (r+, θ+, φ+):

x± = x ∓ d/2 = r± sin θ± cosφ±, (3)
y± = y = r± sin θ± sinφ±, (4)
z± = z − R = r± cos θ±. (5)

To determine the interaction between the conducting
spheres, we must solve the Laplace equation

∇2V = 0, (6)

for the electric potential V (r), with the boundary condi-
tions that V = 0 on the lower plate and on the surface of
the spheres, and V = V0 on the upper plate. To this aim,
we begin to write the total electric potential V (r) as the
sum of the potential V0 z/h of the empty condenser plus
a perturbation due to the presence of the two spheres

V (r) = V0

[ z

h
+ v(r)

]
. (7)

The normalized perturbation v(r) is the solution of the
Laplace equation (6) that is regular in the space inside
the condenser and outside the spheres, and that satisfies
the boundary conditions

v(x, y, z = 0) = v(x, y, z = h) = 0, (8)

v(r− = R, θ−, φ−) = −z(r− = R, θ−)
h

, (9)

v(r+ = R, θ+, φ+) = −z(r+ = R, θ+)
h

, (10)

v(|r| → ∞) = 0, (11)

where z(r− = R, θ−) [resp. z(r+ = R, θ+)] is the
z-coordinate of the point on the left (resp. right) sphere
of local spherical coordinates (r− = R, θ−, φ−) [resp.
(r+ = R, θ+, φ+)]; explicitly

z(r± = R, θ±) = R(1 + cos θ±). (12)

To determine the perturbation v(r), we start by consid-
ering the solutions g�m(r) of the Laplace equation (6),
regular at infinity, obtained by separation of variables in
the spherical coordinates (r−, θ−, φ−):

g�m(r) =
P�

m(cos θ−)h�+1

r�+1
−

cos(mφ−), (13)

where the P�
m(cos θ−), with � = 0, 1, 2, . . . and 0 ≤ m ≤ �,

are the associated Legendre functions of the first kind [16]:

P�
m(t) =

(−1)�+m

2� �!
(
1 − t2

)m/2 d�+m

dt�+m

(
1 − t2

)�
. (14)

The elementary solutions (13) correspond to the usual
terms of the expansion of the electrostatic potential in
multipolar moments [17]; they are singular only at the
center of the left sphere, r− = 0. The factors h�+1 in
their definition have been introduced to make them di-
mensionless. Note also that we retained only the harmon-
ics cos(mφ−), that satisfy the symmetry with respect to

the (x, z)-plane of the present geometry. To construct,
starting from the multipoles (13), a suitable complete ba-
sis of harmonic functions for our situation, we make a set
of infinite mirror images of the potentials (13) through the
two plates of the condenser z = 0 and z = h, such that
the boundary conditions (8) are automatically satisfied,
and we symmetrize the resulting potential through the
(y, z)-plane, as required by our geometry. The resulting
base functions are therefore

G�m(r) =
∞∑

k=−∞

[
g�m(x, y, z + 2kh)

−g�m(x, y,−z + 2kh) + g�m(−x, y, z + 2kh)

−g�m(−x, y,−z + 2kh)
]
; (15)

they are regular in the volume inside the condenser and
outside the spheres, since their only singularities are at
the centers of the spheres and at their successive mirror
images through the two plates of the condenser, i.e., at
(x = ±d/2, y = 0, z = ±R + 2kh), with k = 0,±1,±2, . . .
Using this set of base functions, we decompose the per-
turbation v(r) as

v(r) =
∞∑

�=0

�∑
m=0

v�mG�m(r). (16)

The unknown coefficients v�m depend on the distance d
between the two spheres and can be determined by impos-
ing the remaining boundary conditions (9) and (10) on the
two spheres. Since the basis functions (15) are symmetric
with respect to the (y, z)-plane, only one of the two con-
ditions has to be imposed. This is most efficiently done by
projecting the boundary condition (9) on the set of func-
tions P�′

m′
(cos θ−) cos(m′φ−), that represents a complete

set of orthogonal functions — with the required symmetry
with respect to the (x, z) plane — on the left sphere. The
resulting boundary equations are therefore

∞∑
�=0

�∑
m=0

v�m

∫ π

0

sin θ−dθ−
∫ 2π

0

dφ−
[
G�m(r−=R, θ−, φ−)

× P�′
m′

(cos θ−) cos(m′φ−)
]

=
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−4πR

h
if �′ = m′ = 0

−4πR

3h
if �′ = 1 and m′ = 0.

0 otherwise

(17)

To numerically determine the coefficients v�m, we truncate
the sum in the left-hand side of equation (17) to a finite
� = �m, and we evaluate equation (17) for m′ = 0, 1, . . . , �′
and �′ = 0, 1, . . . , �m. This gives a set of (�m+1)(�m+2)/2
linear equations in the (�m + 1)(�m + 2)/2 unknowns v�m.
The integrals in equation (17), that determine the coeffi-
cients of this linear system, are computed numerically by
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truncating the mirror images sum in equation (15) to a
finite |k| = km. By varying �m and km, we check for the
convergence of the expansion.

2.2 Interaction energy

At fixed potential difference V0, the mechanical interaction
energy F between the spheres is equal to the opposite of
the electrostatic energy stored in the condenser

F = −1
2
QV0, (18)

where Q is the charge stored on the upper plate z = h.
The latter, for our infinite geometry, is actually infinite.
However, its variation ∆Q due to the introduction of the
spheres is finite: this is the charge associated to the po-
tential perturbation V0 v(r) in equation (7). To compute
it, we make use of the reciprocity theorem, according to
which, given two charge distributions ρ(r) and ρ′(r) that
create the potentials V (r) and V ′(r), respectively,

∫
ρ(r)V ′(r) dr =

∫
ρ′(r)V (r) dr, (19)

the volume integrals being performed over all the
space [18]. As (ρ′, V ′) system, we consider a plane parallel
condenser having its lower plate z = 0 at zero potential
and upper plate z = h at the potential V0; its potential
distribution is thus V ′ = V0z/h for 0 ≤ z ≤ h, V ′ = 0 for
z ≤ 0 and V ′ = V0 for z ≥ h. As (ρ, V ) system we consider
the potential distribution having V = V0 v(r) for 0 ≤ z ≤
h and V = 0 otherwise; its associated charge distribution
has three contributions: a surface charge ∆σ−(x, y) on the
lower plate z = 0, a surface charge ∆σ+(x, y) on the up-
per plate z = h, and two point-like charge distributions
centered on the two spheres, at (x = ±d/2, y = 0, z = R),
associated to the corresponding multipolar singularities of
the perturbation v(r). The surface integral of the charge
distribution ∆σ+(x, y) is equal to the charge variation ∆Q
due to the introduction of the spheres inside the con-
denser: ∫

z=h

∆σ+(x, y) dx dy = ∆Q. (20)

Now: ∫
ρ′(r)V (r) dr = 0, (21)

since ρ′ is non-zero only for z = 0 and z = h, where V is
zero. On the other hand,
∫

ρ(r)V ′(r) dr = V0

∫
z=h

∆σ+(x, y) dx dy+
V0

h

∫
ΩR

ρ(r) z dr.

(22)
The last volume integral in this expression is performed in
the region ΩR made of two arbitrary volumes encircling
the two centers of the spheres, where ρ(r) is concentrated:
it equals the z-component of the dipolar moment of the
charge distribution ρ(r) around the origin r = 0. Using
Poisson’s equation ρ(r) = −ε0∇2[V0v(r)], where ε0 is the

Fig. 3. Contour plot of the electrostatic potential V (r) in the
plane y = 0 for two spheres of radius R = 0.2 h at the center to
center distance d = 0.6 h. The spheres are indicated in white.
Darker shadings correspond to lower values of V (r).

vacuum dielectric constant, by successive integrations by
parts and application of the Green theorem, we obtain

∫
ΩR

ρ(r) z dr = ε0V0

∮
∂ΩR

[
v(r)z · ν − z

∂v

∂ν

]
dS, (23)

where the surface integral is performed over two arbi-
trary surfaces ∂ΩR of outward normal ν around the two
centers of the spheres and z is the unit normal in the
z-direction. Taking for ∂ΩR two spherical surfaces cen-
tered at (x = ±d/2, y = 0, z = R) and using the decom-
position (16), one obtains

∫
ΩR

ρ(r) z dr = 8πε0V0h
2

[
v00

R

h
+ v10

]
. (24)

In fact, the only terms in the multipoles (13) having a non-
zero z-component of the dipole moment with respect to
the point r = 0 are the monopole (charge) term � = m = 0
and the dipole term � = 1, m = 0. Finally, putting to-
gether equations (19)–(22) and (24), the charge variation
due to the introduction of the spheres at constant poten-
tial V0 can be expressed as

∆Q = −8πε0V0h

[
v00

R

h
+ v10

]
. (25)

From equation (18), the variation of the mechanical energy
of the spheres is then

∆F (d) = ε0V
2
0 h f(d), (26)

with the normalized mechanical energy

f(d) = 4π

[
v00

R

h
+ v10

]
. (27)

2.3 Numerical results

In Figures 3 and 4 we show typical cartographies of the
electrostatic potential. As it is apparent from Figure 3,
above the top of each sphere the equipotentials are uni-
formly squeezed over the whole remaining thickness. Thus
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Fig. 4. Same as Figure 3 but in the plane z = R, i.e., the plane
parallel to the plates of the condenser and passing through the
centers of the spheres.
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Fig. 5. Normalized mechanical interaction energy ∆f as a
function of the normalized distance d/h between the centers
of the two spheres for 4 different radii of the spheres: R =
0.1 h (dots), R = 0.2 h (squares), R = 0.3 h (triangles), R =
0.4 h (diamonds). The lines indicate the exponential fit of the
numerical data.

the wavelength of the corresponding perturbation along z
is comparable with the thickness h of the condenser. Since
∇2V = 0, this implies a lateral relaxation on the same
length scale: we thus expect that the interaction between
the spheres is short ranged with a decay length ≈ h (rather
than R).

In Figure 5 we present the numerically computed me-
chanical interaction energies ∆f(d) = f(d) − f(∞) as a
function of the distance d between the two spheres, for
different radii R of the spheres, from contact up to a dis-
tance equal to 3.5 times the thickness of the condenser.
Over this range of distances and for spheres of intermedi-
ate size, roughly filling half of the height of the condenser
(triangles in Fig. 5, corresponding to R = 0.3 h), the nu-
merical data are quite well fitted by an exponential law

∆f(d) = A exp(−d/λ), (28)
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Fig. 6. Amplitude A of the exponential fit of the mechani-
cal interaction energy (see Eq. (28)) as a function of the nor-
malized radius R/h of the two spheres. Dots: numerical data.
Continuous line: power-like fit A = 852 (R/h)5.5.

0 1 2 3
1×10

-6

1×10
-3

1×10
0

���

��

Fig. 7. Normalized mechanical interaction energy ∆f as a
function of the normalized distance d/h between the centers
of the two spheres for the experimental radius R = 0.267 h of
the spheres. Dots: numerical results. Continuous line: fit of the
numerical data with the modified Bessel function K0.

with the decay length λ � 0.29h. For smaller or larger
spheres, this exponential behavior is violated at small dis-
tances, while it is recovered at distances larger than h,
with a decay length essentially independent of the size
of the spheres. The amplitude A of the interaction grows
with the radius of the spheres; as shown in Figure 6, it
can reasonably well approximated by the power-like be-
havior A � 852 (R/h)5.5.

Nevertheless, we find that within the explored range
for the distance d, which corresponds to the experimental
situations, the numerical data are also well fitted by a K0

law
∆f(d) = A′K0(d/λ′), (29)

as it is shown in Figure 7 for the radius R = 0.267 h
corresponding to the real radius of the spheres in the
experimental device. The decay length is then slightly
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Fig. 8. Amplitude A′ of the K0 fit of the mechanical inter-
action energy (see Eq. (29)) as a function of the normalized
radius R/h of the two spheres. Dots: numerical data. Contin-
uous line: power-like fit A′ = 876 (R/h)5.4.

higher, λ′ � 0.32 h; the behavior of the corresponding
amplitude A′ as a function of the size of the spheres is
shown in Figure 8: again, it is well fitted by a power-
like behavior A′ � 876 (R/h)5.4 with essentially the same
exponent. Indeed, the presence of a sphere inside the con-
denser introduces a perturbation of the electrostatic po-
tential that can be expanded in Fourier harmonics along z.
The first harmonic varies along z as sin(πz/h): far from
the axis of the sphere, the corresponding solution of the
Laplace equation that has cylindrical symmetry along its
axis and that decays to zero at infinity is proportional to
sin(πz/h)K0(πd/h), where d is the distance from the axis
of the particle. We thus expect λ = h/π � 0.318 h.

3 Interaction with a confining ring

In our experiment, the spheres are laterally confined by a
frame that is in electric contact with the lower plate and
almost touches the upper one. Here, we focus on the case
of a circular ring of radius Rc and height hc. To treat this
confinement using the results of the preceding section, we
model it as a necklace of touching spheres of diameter hc,
whose centers lie on a circle of radius Rc. We make the
additional simplifying assumption that the electrostatic
interactions are pairwise additive. These two hypotheses
are justified for distances to the confining ring large with
respect to its height.

For simplicity, as normalized interaction energy vc0 be-
tween a sphere and one of the fictitious spheres of the
confining ring we take the exponential approximation

vc0 = v0 exp(−d/λ), (30)

where the amplitude v0 depends on the radius of the
sphere and on the height of the ring. The center to cen-
ter distance d can be expressed as d = (r2 + R2

c −
2rRc cosφ)1/2, as a function of the distance r between

the center of the sphere and the center of the confining
ring, and the angle φ between the two spheres, seen from
the center of the ring. The screening length λ, which does
not depend on the radius of the spheres, is the same as
the one determined in Section 2.3. The total normalized
confining potential can then be written as

vc = v0

M∑
n=1

exp

[
−λ−1

√
r2 + R2

c − 2rRc cos
(

2πn

M

)]
,

(31)
where M = 2πRc/hc is the number of the necklace spheres
making up the confining ring. To obtain a simpler analyt-
ical expression, we approximate the sum by an integral.
This is well justified in the limit Rc 
 hc, which is already
implicit in the hypothesis that the distance Rc − r at the
confining ring is large with respect to its height hc. In this
limit, the confining potential becomes

vc � Mv0

2π

∫ 2π

0

exp
[
−λ−1

√
r2 + R2

c − 2rRc cosφ
]
dφ.

(32)
This integral cannot be expressed analytically in terms of
elementary functions. However, a reasonably good approx-
imation for r � Rc/2 can be obtained by the saddle-point
method [19]

vc(r � Rc/2) � Mv0

√
λ

2π

(
1
r
− 1

Rc

)
exp

[
r − Rc

λ

]
.

(33)
Finally, as Rc 
 λ and since it is found numerically in
that case that the logarithm of the confining potential (31)
has a dependence on r that is not far from linear, we
approximate it with the first-order Taylor expansion of
the logarithm of the approximate potential (33) around
r = Rc/2. The resulting approximate confining potential
that we shall use in the following is then

vc(r) � v0

√
2πλRc

hc
exp

[
1 − 2r

Rc
+

r − Rc

λ

]
. (34)

This expression fits very well the discrete sum (31) in the
whole range of validity of the latter. Note that v0 still
needs to be determined, which will be done in the follow-
ing section, where the approximations made above will be
validated.

4 Equilibrium configurations

In order to validate our model, we consider the equilib-
rium states of small Wigner islands. More precisely, we
will successively focus on the general configurations, then
on the precise positions of the spheres and finally on the
energetic differences between the stable and metastable
states.

We use the approximate interparticle and confining po-
tentials (28) and (34) to determine numerically the equi-
librium configurations of our macroscopic Wigner islands.
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The theoretical predictions are compared with the ex-
perimental observations, as it was done in reference [7]
for some model interaction potentials. We recall that our
Wigner islands consist of 5 ≤ N ≤ 30 spheres of ra-
dius R = 0.4 mm contained in a condenser of height h =
1.5 mm held at the potential difference V0 = 700 V; the
spheres are confined within a disc of radius Rc = 5 mm
and height hc practically coinciding with h.

The theoretical stable and metastable equilibrium con-
figurations are obtained by searching numerically for the
local minima of the total, pairwise additive, normalized
interaction energy

H =
∑

1≤i<j≤N

∆f(|ri − rj |) +
∑

1≤i≤N

vc(|ri|), (35)

where ri is the 2D position of the i-th sphere with respect
to the center of the ring. According to equation (26), the
interaction energy is normalized with respect to ε0V

2
0 h. To

minimize H , we employ a conjugate gradient method [20],
starting from many suitably chosen different initial con-
ditions, in order to explore a significant portion of the
complex energy landscape and find the various relative
minima.

The stable and metastable configurations form pat-
terns roughly constituted by concentric shells on which
the spheres are located. We shall refer to such patterns
by means of the notation (N0-N1-N2-. . .), where Ni is the
number of spheres in the i-th shell from the center.

The total interaction energy (35) depends on three pa-
rameters: the decay length λ, the amplitude of the in-
terparticle interaction A [see Eq. (28)], and the ampli-
tude of the interaction with the ring v0 [see Eq. (34)].
We take the exponential approximation with λ = 0.29h
and A = 0.68 as determined by a best fit of the numer-
ical interaction energy between two equal spheres of ra-
dius R = 0.267h. The remaining parameter v0, that de-
pends on the height of the confining ring, is determined
by adjusting the radius of the ground state configuration
for 5 spheres, that consists in a single shell of 5 parti-
cles, to the experimental radius r = 2.25 mm. We thus
obtain v0 = 0.47. We note that, contrary to what one
would expect on the basis that hc > 2R (i.e., the necklace
confining spheres are larger than the interacting spheres),
we have v0 < A. However, it must be noted that, as we
pointed out, the approximate confining interaction ener-
gies (31) and (34) are justified only in the limit Rc 
 hc,
a condition that is not satisfied in our experimental situ-
ation, where Rc/hc � 3. In that conditions, trying to de-
termine more precisely v0 by studying the interaction of
two spheres of unequal heights would be pointless, since
the approximation of the confining frame as a wedge of
spheres would still remain. Nonetheless, as we shall see,
our approximate interaction energies reasonably well ac-
count for almost all our experimental observations.

4.1 Ground state configurations

In Table 1 we report a comparison between the experi-
mental and the theoretical ground state configurations for

Table 1. Experimental and theoretical ground state config-
urations for 5 ≤ N ≤ 30 spheres of radius R = 0.4mm in a
condenser of height h = 1.5 mm confined inside a ring of radius
Rc = 5mm. The cases were there is a discrepancy between the
experimental observation and the theoretical prediction are set
in boldface.

N Experiments Theory N Experiments Theory

5 5 5 18 1–6–11 1–6–11

6 1–5 1–5 19 1–6–12 1–6–12

7 1–6 1–6 20 1–6–13 1–6–13

8 1–7 1–7 21 1–7–13 1–7–13

9 1–8 1–8 22 1–7–14 1–7–14

10 2–8 2–8 23 2–8–13 1–8–14

11 3–8 3–8 24 2–8–14 2–8–14

12 3–9 3–9 25 3–8–14 3–8–14

13 4–9 4–9 26 3–9–14 3–9–14

14 4–10 4–10 27 3–9–15 3–9–15

15 4–11 4–11 28 3–9–16 3–9–16

16 5–11 5–11 29 4–9–16 4–10–15

17 1–5–11 1–5–11 30 4–9–17 4–10–16

a number N of spheres ranging from 5 to 30. All but three
of the ground state configurations are correctly predicted.
In reference [7], these same configurations were compared
with predictions derived from other model interaction po-
tentials: the best agreement was found for a logarithmic
potential, that fails to predict the correct ground state
only in 4 cases, the same 3 cases as our present model
(N = 23, 29, 30), plus the N = 28 situation.

As for the previously studied interactions, the observed
discrepancies, that occur for dense packing of the spheres,
are irrelevant, mainly because of the extreme smallness of
the relative energy difference between the ground and the
first excited state, as for the N = 23 and N = 29 cases.
Moreover, for dense packing the hypothesis of pairwise
interaction could be too strong and steric effects might
make the experimental determination of the ground state
tougher. Let’s mention finally that another possible source
of error might be the incorrect treatment of the confining
potential for spheres too close to the ring.

4.2 Relative positions in the configurations

In Figure 9 we compare the experimental positions of the
spheres in the ground state configuration for N = 20
spheres with the predicted one. We stress that these re-
sults are not a fit of the experimental data, the only ad-
justable parameter of our model, the relative amplitude
of the confining potential v0 appearing in equation (34)
having been set once for all by comparison with the sit-
uation for N = 5 spheres. Again, given that the condi-
tion of validity Rc/hc 
 1 of our approximate confining
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Fig. 9. Ground state configuration for N = 20 spheres. The
external circle is the confining ring, the small circles represent
the experimental positions of the spheres, drawn to scale. The
plus are the center of the theoretical positions of the spheres.

Table 2. Radii of the outer shell of 4 different stable (5
and 1–5) and metastable (1–4 and 6) configurations. Rexp:
experimental values; Rth: theoretical values according to our
model; Rlog: theoretical value for a logarithmic potential with
a parabolic confining. The two theoretical values were obtained
by tuning the confining potential such as to reproduce the ex-
perimental observation corresponding to the first configura-
tion.

Configuration Rexp [mm] Rth [mm] Rlog [mm]

5 2.25 2.25 2.25

1–4 2.44 2.45 2.52

1–5 2.48 2.50 2.76

6 2.35 2.43 2.52

potential is not satisfied, the agreement between the ex-
perimental data and our simple model is rather encourag-
ing. The same good agreement is found for all the ground
and excited state configurations. In particular, in Table 2
we compare the experimental and theoretical radii of the
first two states for N = 5 and N = 6 spheres, along with
the analytical prediction for a logarithmic potential with
a parabolic confinement. This confirms that our theoreti-
cal interaction is closer to the real one than the previously
predicted ones.

4.3 Energy levels

Finally, the energy differences between the ground and
the first excited states have been explored. Experimen-

Table 3. Theoretical energies Eth of the first excited state
for three different numbers N of spheres and theoretical ∆Eth

and experimental ∆Eexp differences of the energy of the excited
state with respect to the ground state.

N Excited state Eth [J] ∆Eth [J] ∆Eexp [J]

18 1–5–12 4.1 × 10−9 1.8 × 10−11 4.8 × 10−11

19 1–7–11 4.7 × 10−9 0.9 × 10−10 1.3 × 10−10

20 1–7–12 5.3 × 10−9 0.3 × 10−11 1.5 × 10−11

tally, the possibility to submit the system, through a me-
chanical shaking, to an effective temperature T that has
already been calibrated allows us to explore these differ-
ent states [6]. Neglecting the higher excited levels, that
have a much larger energy, the difference ∆E between the
energy E2 of the first excited level and the energy E1 of
the ground state is then obtained by measuring the ratio
of the respective mean residence times 〈τ2〉 and 〈τ1〉 [21]:

〈τ1〉
〈τ2〉 ∝ e∆E/kBT . (36)

Table 3 reports a comparison between the experimental
and theoretical excitation energies for N = 18, 19, and 20
spheres. We also report the theoretical absolute values of
the interaction energies of the first excited states. The
agreement between the theoretical predictions and the ex-
perimental data is qualitatively good, considering that the
relative differences ∆E/E2 are extremely small. This last
comparison finally validate our model.

5 Conclusion

Using a semi-analytical method, we have performed a
direct calculation of the interaction between two conduct-
ing spheres lying on the bottom electrode of a plane con-
denser. We find that, within a significant range, the in-
teraction energy can be described by a simple decaying
exponential, as well as by a K0 function, both being gov-
erned by a screening length that is typically a third of
the condenser’s height. On the basis of this interaction,
our theoretical predictions for small Wigner islands con-
stituted by up to a few tens of spheres are in good accor-
dance with the experimental observations, thus validating
our simple model.

This study definitively completes the description of our
system of interacting spheres, where the density, the inter-
action amplitude and the temperature are now well-known
and can easily be tuned. Thus, this system is a macro-
scopic experimental model that easily allows to explore
the properties of two-dimensional confined systems, such
as vortices in mesoscopic type-II superconductors. In par-
ticular, the understanding of the dynamics of the vortices
could be enriched in a complementary way by correspond-
ing studies on the macroscopic Wigner islands.
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